Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Main subject
Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.09.09.459664

ABSTRACT

Development of affordable and effective vaccines that can also protect vulnerable populations such as the elderly from COVID-19-related morbidity and mortality is a public health priority. Here we took a systematic and iterative approach by testing several SARS-CoV-2 protein antigens and adjuvants to identify a combination that elicits neutralizing antibodies and protection in young and aged mice. In particular, SARS-CoV-2 receptorbinding domain (RBD) displayed as a protein nanoparticle (RBD-NP) was a highly effective antigen, and when formulated with an oil-in-water emulsion containing Carbohydrate fatty acid MonoSulphate derivative (CMS) induced the highest levels of cross-neutralizing antibodies compared to other oil-in-water emulsions or AS01B. Mechanistically, CMS induced antigen retention in the draining lymph node (dLN) and expression of cytokines, chemokines and type I interferon-stimulated genes at both injection site and dLN. Overall, CMS:RBD-NP is effective across multiple age groups and is an exemplar of a SARS-CoV-2 subunit vaccine tailored to the elderly.


Subject(s)
COVID-19
2.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.05.20.444848

ABSTRACT

Global deployment of vaccines that can provide protection across several age groups is still urgently needed to end the COVID-19 pandemic especially for low- and middle-income countries. While vaccines against SARS-CoV-2 based on mRNA and adenoviral-vector technologies have been rapidly developed, additional practical and scalable SARS-CoV-2 vaccines are needed to meet global demand. In this context, protein subunit vaccines formulated with appropriate adjuvants represent a promising approach to address this urgent need. Receptor-binding domain (RBD) is a key target of neutralizing antibodies (Abs) but is poorly immunogenic. We therefore compared pattern recognition receptor (PRR) agonists, including those activating STING, TLR3, TLR4 and TLR9, alone or formulated with aluminum hydroxide (AH), and benchmarked them to AS01B and AS03-like emulsion-based adjuvants for their potential to enhance RBD immunogenicity in young and aged mice. We found that the AH and CpG adjuvant formulation (AH:CpG) demonstrated the highest enhancement of anti-RBD neutralizing Ab titers in both age groups (~80-fold over AH), and protected aged mice from the SARS-CoV-2 challenge. Notably, AH:CpG-adjuvanted RBD vaccine elicited neutralizing Abs against both wild-type SARS-CoV-2 and B.1.351 variant at serum concentrations comparable to those induced by the authorized mRNA BNT162b2 vaccine. AH:CpG induced similar cytokine and chemokine gene enrichment patterns in the draining lymph nodes of both young adult and aged mice and synergistically enhanced cytokine and chemokine production in human young adult and elderly mononuclear cells. These data support further development of AH:CpG-adjuvanted RBD as an affordable vaccine that may be effective across multiple age groups.


Subject(s)
COVID-19
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.05.20168435

ABSTRACT

Background NVX-CoV2373 is a recombinant nanoparticle vaccine composed of trimeric full-length SARS-CoV-2 spike glycoproteins. We present the Day 35 primary analysis of our trial of NVX-CoV2373 with or without the saponin-based Matrix-M1 adjuvant in healthy adults. Methods This is a randomized, observer-blinded, placebo-controlled, phase 1 trial in 131 healthy adults. Trial vaccination comprised two intramuscular injections, 21 days apart. Primary outcomes were reactogenicity, safety labs, and immunoglobulin G (IgG) anti-spike protein response. Secondary outcomes included adverse events, wild-type virus neutralizing antibody, and T-cell responses. Results Participants received NVX-CoV2373 with or without Matrix-M1 (n=106) or placebo (n=25). There were no serious adverse events. Reactogenicity was mainly mild in severity and of short duration (mean [≥] 2 days), with second vaccinations inducing greater local and systemic reactogenicity. The adjuvant significantly enhanced immune responses and was antigen dose-sparing, and the two-dose 5g NVX-CoV2373/Matrix-M1 vaccine induced mean anti-spike IgG and neutralizing antibody responses that exceeded the mean responses in convalescent sera from COVID-19 patients with clinically significant illnesses. The vaccine also induced antigen-specific T cells with a largely T helper 1 (Th1) phenotype. Conclusions NVX-CoV2373/Matrix-M1 was well tolerated and elicited robust immune responses (IgG and neutralization) four-fold higher than the mean observed in COVID-19 convalescent serum from participants with clinical symptoms requiring medical care and induced CD4+ T-cell responses biased toward a Th1 phenotype. These findings suggest that the vaccine may confer protection and support transition to efficacy evaluations to test this hypothesis. (Funded by the Coalition for Epidemic Preparedness Innovations; ClinicalTrials.gov number, NCT04368988).


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL